回望南山
记忆痕迹可以鲜明, 回望往事如数家珍——
posts - 177,  comments - 54,  trackbacks - 0
http://dev.21tx.com/2005/05/07/11152.html
排序算法是一种基本并且常用的算法。由于实际工作中处理的数量巨大,所以排序算法
对算法本身的速度要求很高。
  而一般我们所谓的算法的性能主要是指算法的复杂度,一般用O方法来表示。在后面我将
给出详细的说明。

  对于排序的算法我想先做一点简单的介绍,也是给这篇文章理一个提纲。
  我将按照算法的复杂度,从简单到难来分析算法。
  第一部分是简单排序算法,后面你将看到他们的共同点是算法复杂度为O(N*N)(因为没有
使用word,所以无法打出上标和下标)。
  第二部分是高级排序算法,复杂度为O(Log2(N))。这里我们只介绍一种算法。另外还有几种
算法因为涉及树与堆的概念,所以这里不于讨论。
  第三部分类似动脑筋。这里的两种算法并不是最好的(甚至有最慢的),但是算法本身比较
奇特,值得参考(编程的角度)。同时也可以让我们从另外的角度来认识这个问题。
  第四部分是我送给大家的一个餐后的甜点——一个基于模板的通用快速排序。由于是模板函数
可以对任何数据类型排序(抱歉,里面使用了一些论坛专家的呢称)。
  
  现在,让我们开始吧:
  
一、简单排序算法
由于程序比较简单,所以没有加什么注释。所有的程序都给出了完整的运行代码,并在我的VC环境
下运行通过。因为没有涉及MFC和Windows的内容,所以在BORLAND C++的平台上应该也不会有什么
问题的。在代码的后面给出了运行过程示意,希望对理解有帮助。

1.冒泡法:
这是最原始,也是众所周知的最慢的算法了。他的名字的由来因为它的工作看来象是冒泡:
#include <iostream.h>

void BubbleSort(int* pData,int Count)
{
  int iTemp;
  for(int i=1;i<Count;i++)
  {
    for(int j=Count-1;j>=i;j--)
    {
      if(pData[j]<pData[j-1])
      {
        iTemp = pData[j-1];
        pData[j-1] = pData[j];
        pData[j] = iTemp;
      }
    }
  }
}

void main()
{
  int data[] = {10,9,8,7,6,5,4};
  BubbleSort(data,7);
  for (int i=0;i<7;i++)
    cout<<data[i]<<" ";
  cout<<"\n";
}

倒序(最糟情况)
第一轮:10,9,8,7->10,9,7,8->10,7,9,8->7,10,9,8(交换3次)
第二轮:7,10,9,8->7,10,8,9->7,8,10,9(交换2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:6次

其他:
第一轮:8,10,7,9->8,10,7,9->8,7,10,9->7,8,10,9(交换2次)
第二轮:7,8,10,9->7,8,10,9->7,8,10,9(交换0次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:3次

上面我们给出了程序段,现在我们分析它:这里,影响我们算法性能的主要部分是循环和交换,
显然,次数越多,性能就越差。从上面的程序我们可以看出循环的次数是固定的,为1+2+...+n-1。
写成公式就是1/2*(n-1)*n。
现在注意,我们给出O方法的定义:

  若存在一常量K和起点n0,使当n>=n0时,有f(n)<=K*g(n),则f(n) = O(g(n))。(呵呵,不要说没
学好数学呀,对于编程数学是非常重要的!!!)

现在我们来看1/2*(n-1)*n,当K=1/2,n0=1,g(n)=n*n时,1/2*(n-1)*n<=1/2*n*n=K*g(n)。所以f(n)
=O(g(n))=O(n*n)。所以我们程序循环的复杂度为O(n*n)。
再看交换。从程序后面所跟的表可以看到,两种情况的循环相同,交换不同。其实交换本身同数据源的
有序程度有极大的关系,当数据处于倒序的情况时,交换次数同循环一样(每次循环判断都会交换),
复杂度为O(n*n)。当数据为正序,将不会有交换。复杂度为O(0)。乱序时处于中间状态。正是由于这样的
原因,我们通常都是通过循环次数来对比算法。


2.交换法:
交换法的程序最清晰简单,每次用当前的元素一一的同其后的元素比较并交换。
#include <iostream.h>
void ExchangeSort(int* pData,int Count)
{
  int iTemp;
  for(int i=0;i<Count-1;i++)
  {
    for(int j=i+1;j<Count;j++)
    {
      if(pData[j]<pData[i])
      {
        iTemp = pData[i];
        pData[i] = pData[j];
        pData[j] = iTemp;
      }
    }
  }
}

void main()
{
  int data[] = {10,9,8,7,6,5,4};
  ExchangeSort(data,7);
  for (int i=0;i<7;i++)
    cout<<data[i]<<" ";
  cout<<"\n";
}
倒序(最糟情况)
第一轮:10,9,8,7->9,10,8,7->8,10,9,7->7,10,9,8(交换3次)
第二轮:7,10,9,8->7,9,10,8->7,8,10,9(交换2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:6次

其他:
第一轮:8,10,7,9->8,10,7,9->7,10,8,9->7,10,8,9(交换1次)
第二轮:7,10,8,9->7,8,10,9->7,8,10,9(交换1次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:3次

从运行的表格来看,交换几乎和冒泡一样糟。事实确实如此。循环次数和冒泡一样
也是1/2*(n-1)*n,所以算法的复杂度仍然是O(n*n)。由于我们无法给出所有的情况,所以
只能直接告诉大家他们在交换上面也是一样的糟糕(在某些情况下稍好,在某些情况下稍差)。

3.选择法:
现在我们终于可以看到一点希望:选择法,这种方法提高了一点性能(某些情况下)
这种方法类似我们人为的排序习惯:从数据中选择最小的同第一个值交换,在从省下的部分中
选择最小的与第二个交换,这样往复下去。
#include <iostream.h>
void SelectSort(int* pData,int Count)
{
  int iTemp;
  int iPos;
  for(int i=0;i<Count-1;i++)
  {
    iTemp = pData[i];
    iPos = i;
    for(int j=i+1;j<Count;j++)
    {
      if(pData[j]<iTemp)
      {
        iTemp = pData[j];
        iPos = j;
      }
    }
    pData[iPos] = pData[i];
    pData[i] = iTemp;
  }
}

void main()
{
  int data[] = {10,9,8,7,6,5,4};
  SelectSort(data,7);
  for (int i=0;i<7;i++)
    cout<<data[i]<<" ";
  cout<<"\n";
}
倒序(最糟情况)
第一轮:10,9,8,7->(iTemp=9)10,9,8,7->(iTemp=8)10,9,8,7->(iTemp=7)7,9,8,10(交换1次)
第二轮:7,9,8,10->7,9,8,10(iTemp=8)->(iTemp=8)7,8,9,10(交换1次)
第一轮:7,8,9,10->(iTemp=9)7,8,9,10(交换0次)
循环次数:6次
交换次数:2次

其他:
第一轮:8,10,7,9->(iTemp=8)8,10,7,9->(iTemp=7)8,10,7,9->(iTemp=7)7,10,8,9(交换1次)
第二轮:7,10,8,9->(iTemp=8)7,10,8,9->(iTemp=8)7,8,10,9(交换1次)
第一轮:7,8,10,9->(iTemp=9)7,8,9,10(交换1次)
循环次数:6次
交换次数:3次
遗憾的是算法需要的循环次数依然是1/2*(n-1)*n。所以算法复杂度为O(n*n)。
我们来看他的交换。由于每次外层循环只产生一次交换(只有一个最小值)。所以f(n)<=n
所以我们有f(n)=O(n)。所以,在数据较乱的时候,可以减少一定的交换次数。


4.插入法:
插入法较为复杂,它的基本工作原理是抽出牌,在前面的牌中寻找相应的位置插入,然后继续下一张
#include <iostream.h>
void InsertSort(int* pData,int Count)
{
  int iTemp;
  int iPos;
  for(int i=1;i<Count;i++)
  {
    iTemp = pData[i];
    iPos = i-1;
    while((iPos>=0) && (iTemp<pData[iPos]))
    {
      pData[iPos+1] = pData[iPos];
      iPos--;
    }
    pData[iPos+1] = iTemp;
  }
}

void main()
{
  int data[] = {10,9,8,7,6,5,4};
  InsertSort(data,7);
  for (int i=0;i<7;i++)
    cout<<data[i]<<" ";
  cout<<"\n";
}

倒序(最糟情况)
第一轮:10,9,8,7->9,10,8,7(交换1次)(循环1次)
第二轮:9,10,8,7->8,9,10,7(交换1次)(循环2次)
第一轮:8,9,10,7->7,8,9,10(交换1次)(循环3次)
循环次数:6次
交换次数:3次

其他:
第一轮:8,10,7,9->8,10,7,9(交换0次)(循环1次)
第二轮:8,10,7,9->7,8,10,9(交换1次)(循环2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)(循环1次)
循环次数:4次
交换次数:2次

上面结尾的行为分析事实上造成了一种假象,让我们认为这种算法是简单算法中最好的,其实不是,
因为其循环次数虽然并不固定,我们仍可以使用O方法。从上面的结果可以看出,循环的次数f(n)<=
1/2*n*(n-1)<=1/2*n*n。所以其复杂度仍为O(n*n)(这里说明一下,其实如果不是为了展示这些简单
排序的不同,交换次数仍然可以这样推导)。现在看交换,从外观上看,交换次数是O(n)(推导类似
选择法),但我们每次要进行与内层循环相同次数的‘=’操作。正常的一次交换我们需要三次‘=’
而这里显然多了一些,所以我们浪费了时间。

最终,我个人认为,在简单排序算法中,选择法是最好的。


二、高级排序算法:
高级排序算法中我们将只介绍这一种,同时也是目前我所知道(我看过的资料中)的最快的。
它的工作看起来仍然象一个二叉树。首先我们选择一个中间值middle程序中我们使用数组中间值,然后
把比它小的放在左边,大的放在右边(具体的实现是从两边找,找到一对后交换)。然后对两边分别使
用这个过程(最容易的方法——递归)。

1.快速排序:
#include <iostream.h>

void run(int* pData,int left,int right)
{
  int i,j;
  int middle,iTemp;
  i = left;
  j = right;
  middle = pData[(left+right)/2]; //求中间值
  do{
    while((pData[i]<middle) && (i<right))//从左扫描大于中值的数
      i++;     
    while((pData[j]>middle) && (j>left))//从右扫描大于中值的数
      j--;
    if(i<=j)//找到了一对值
    {
      //交换
      iTemp = pData[i];
      pData[i] = pData[j];
      pData[j] = iTemp;
      i++;
      j--;
    }
  }while(i<=j);//如果两边扫描的下标交错,就停止(完成一次)

  //当左边部分有值(left<j),递归左半边
  if(left<j)
    run(pData,left,j);
  //当右边部分有值(right>i),递归右半边
  if(right>i)
    run(pData,i,right);
}

void QuickSort(int* pData,int Count)
{
  run(pData,0,Count-1);
}

void main()
{
  int data[] = {10,9,8,7,6,5,4};
  QuickSort(data,7);
  for (int i=0;i<7;i++)
    cout<<data[i]<<" ";
  cout<<"\n";
}

这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况
1.数组的大小是2的幂,这样分下去始终可以被2整除。假设为2的k次方,即k=log2(n)。
2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。
第一层递归,循环n次,第二层循环2*(n/2)......
所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n
所以算法复杂度为O(log2(n)*n)
其他的情况只会比这种情况差,最差的情况是每次选择到的middle都是最小值或最大值,那么他将变
成交换法(由于使用了递归,情况更糟)。但是你认为这种情况发生的几率有多大??呵呵,你完全
不必担心这个问题。实践证明,大多数的情况,快速排序总是最好的。
如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢
于快速排序(因为要重组堆)。

三、其他排序
1.双向冒泡:
通常的冒泡是单向的,而这里是双向的,也就是说还要进行反向的工作。
代码看起来复杂,仔细理一下就明白了,是一个来回震荡的方式。
写这段代码的作者认为这样可以在冒泡的基础上减少一些交换(我不这么认为,也许我错了)。
反正我认为这是一段有趣的代码,值得一看。
#include <iostream.h>
void Bubble2Sort(int* pData,int Count)
{
  int iTemp;
  int left = 1;
  int right =Count -1;
  int t;
  do
  {
    //正向的部分
    for(int i=right;i>=left;i--)
    {
      if(pData[i]<pData[i-1])
      {
        iTemp = pData[i];
        pData[i] = pData[i-1];
        pData[i-1] = iTemp;
        t = i;
      }
    }
    left = t+1;

    //反向的部分
    for(i=left;i<right+1;i++)
    {
      if(pData[i]<pData[i-1])
      {
        iTemp = pData[i];
        pData[i] = pData[i-1];
        pData[i-1] = iTemp;
        t = i;
      }
    }
    right = t-1;
  }while(left<=right);
}

void main()
{
  int data[] = {10,9,8,7,6,5,4};
  Bubble2Sort(data,7);
  for (int i=0;i<7;i++)
    cout<<data[i]<<" ";
  cout<<"\n";
}


2.SHELL排序
这个排序非常复杂,看了程序就知道了。
首先需要一个递减的步长,这里我们使用的是9、5、3、1(最后的步长必须是1)。
工作原理是首先对相隔9-1个元素的所有内容排序,然后再使用同样的方法对相隔5-1个元素的排序
以次类推。
#include <iostream.h>
void ShellSort(int* pData,int Count)
{
  int step[4];
  step[0] = 9;
  step[1] = 5;
  step[2] = 3;
  step[3] = 1;

  int iTemp;
  int k,s,w;
  for(int i=0;i<4;i++)
  {
    k = step[i];
    s = -k;
    for(int j=k;j<Count;j++)
    {
      iTemp = pData[j];
      w = j-k;//求上step个元素的下标
      if(s ==0)
      {
        s = -k;
        s++;
        pData[s] = iTemp;
      }
      while((iTemp<pData[w]) && (w>=0) && (w<=Count))
      {
        pData[w+k] = pData[w];
        w = w-k;
      }
      pData[w+k] = iTemp;
    }
  }
}

void main()
{
  int data[] = {10,9,8,7,6,5,4,3,2,1,-10,-1};
  ShellSort(data,12);
  for (int i=0;i<12;i++)
    cout<<data[i]<<" ";
  cout<<"\n";
}
呵呵,程序看起来有些头疼。不过也不是很难,把s==0的块去掉就轻松多了,这里是避免使用0
步长造成程序异常而写的代码。这个代码我认为很值得一看。
这个算法的得名是因为其发明者的名字D.L.SHELL。依照参考资料上的说法:“由于复杂的数学原因
避免使用2的幂次步长,它能降低算法效率。”另外算法的复杂度为n的1.2次幂。同样因为非常复杂并
“超出本书讨论范围”的原因(我也不知道过程),我们只有结果了。


四、基于模板的通用排序:
这个程序我想就没有分析的必要了,大家看一下就可以了。不明白可以在论坛上问。
MyData.h文件
///////////////////////////////////////////////////////
class CMyData 
{
public:
  CMyData(int Index,char* strData);
  CMyData();
  virtual ~CMyData();

  int m_iIndex;
  int GetDataSize(){ return m_iDataSize; };
  const char* GetData(){ return m_strDatamember; };
  //这里重载了操作符:
  CMyData& operator =(CMyData &SrcData);
  bool operator <(CMyData& data );
  bool operator >(CMyData& data );

private:
  char* m_strDatamember;
  int m_iDataSize;
};
////////////////////////////////////////////////////////

MyData.cpp文件
////////////////////////////////////////////////////////
CMyData::CMyData():
m_iIndex(0),
m_iDataSize(0),
m_strDatamember(NULL)
{
}

CMyData::~CMyData()
{
  if(m_strDatamember != NULL)
    delete[] m_strDatamember;
  m_strDatamember = NULL;
}

CMyData::CMyData(int Index,char* strData):
m_iIndex(Index),
m_iDataSize(0),
m_strDatamember(NULL)
{
  m_iDataSize = strlen(strData);
  m_strDatamember = new char[m_iDataSize+1];
  strcpy(m_strDatamember,strData);
}

CMyData& CMyData::operator =(CMyData &SrcData)
{
  m_iIndex = SrcData.m_iIndex;
  m_iDataSize = SrcData.GetDataSize();
  m_strDatamember = new char[m_iDataSize+1];
  strcpy(m_strDatamember,SrcData.GetData());
  return *this;
}

bool CMyData::operator <(CMyData& data )
{
  return m_iIndex<data.m_iIndex;
}

bool CMyData::operator >(CMyData& data )
{
  return m_iIndex>data.m_iIndex;
}
///////////////////////////////////////////////////////////

//////////////////////////////////////////////////////////
//主程序部分
#include <iostream.h>
#include "MyData.h"

template <class T>
void run(T* pData,int left,int right)
{
  int i,j;
  T middle,iTemp;
  i = left;
  j = right;
  //下面的比较都调用我们重载的操作符函数
  middle = pData[(left+right)/2]; //求中间值
  do{
    while((pData[i]<middle) && (i<right))//从左扫描大于中值的数
      i++;     
    while((pData[j]>middle) && (j>left))//从右扫描大于中值的数
      j--;
    if(i<=j)//找到了一对值
    {
      //交换
      iTemp = pData[i];
      pData[i] = pData[j];
      pData[j] = iTemp;
      i++;
      j--;
    }
  }while(i<=j);//如果两边扫描的下标交错,就停止(完成一次)

  //当左边部分有值(left<j),递归左半边
  if(left<j)
    run(pData,left,j);
  //当右边部分有值(right>i),递归右半边
  if(right>i)
    run(pData,i,right);
}

template <class T>
void QuickSort(T* pData,int Count)
{
  run(pData,0,Count-1);
}

void main()
{
  CMyData data[] = {
    CMyData(8,"xulion"),
    CMyData(7,"sanzoo"),
    CMyData(6,"wangjun"),
    CMyData(5,"VCKBASE"),
    CMyData(4,"jacky2000"),
    CMyData(3,"cwally"),
    CMyData(2,"VCUSER"),
    CMyData(1,"isdong")
  };
  QuickSort(data,8);
  for (int i=0;i<8;i++)
    cout<<data[i].m_iIndex<<" "<<data[i].GetData()<<"\n";
  cout<<"\n";
}
posted on 2008-11-06 14:46 深藏记忆 阅读(254) 评论(0)  编辑  收藏

只有注册用户登录后才能发表评论。
网站导航:

飘过是缘,相识最真

订阅到抓虾
google reader
gougou


点击这里给我发消息


<2008年11月>
2627282930311
2345678
9101112131415
16171819202122
23242526272829
30123456

常用链接

留言簿(5)

随笔分类

随笔档案

文章分类

文章档案

相册

收藏夹

八面来息

天天充电

同行者

积分与排名

  • 积分 - 59540
  • 排名 - 62

最新评论

阅读排行榜

评论排行榜